New MEMS Tweezers for the Viscoelastic Characterization of Soft Materials at the Microscale
نویسندگان
چکیده
As many studies show, there is a relation between the tissue’s mechanical characteristics and some specific diseases. Knowing this relationship would help early diagnosis or microsurgery. In this paper, a new method for measuring the viscoelastic properties of soft materials at the microscale is proposed. This approach is based on the adoption of a microsystem whose mechanical structure can be reduced to a compliant four bar linkage where the connecting rod is substituted by the tissue sample. A procedure to identify both stiffness and damping coefficients of the tissue is then applied to the developed hardware. Particularly, stiffness is calculated solving the static equations of the mechanism in a desired configuration, while the damping coefficient is inferred from the dynamic equations, which are written under the hypothesis that the sample tissue is excited by a variable compression force characterized by a suitable wave form. The whole procedure is implemented by making use of a control system.
منابع مشابه
measuring viscoelastic properties of Red Blood Cell using optical tweezers
Efforts have been made to study the behavior of complex materials in micrometer dimensions with various techniques. One of these methods is the use of optical tweezers for biophysical applications. Red blood cells, as the most abundant blood-forming cells, play an important role in the life of living organisms, and their unique mechanical properties are important. In this report, the study of s...
متن کاملCellular viscoelasticity probed by active rheology in optical tweezers.
A novel approach to probe viscoelastic properties of cells based on double trap optical tweezers is reported. Frequency dependence of the tangent of phase difference in the movement of the opposite erythrocyte edges while one of the edges is forced to oscillate by optical tweezers appeared to be highly dependent on the rigidity of the cellular membrane. Effective viscoelastic parameters charact...
متن کاملFrom macro- to microscale poroelastic characterization of polymeric hydrogels via indentation†
Recent advances in contact mechanics have formalized approaches to distinguish between poroelastic and viscoelastic deformation regimes via load relaxation experiments, and to simultaneously extract the mechanical and transport properties of gels at the macroscale. As poroelastic relaxation times scale quadratically with contact diameter, contact radii and depths on the mm scale can require hou...
متن کاملPortable magnetic tweezers device enables visualization of the three-dimensional microscale deformation of soft biological materials.
We have designed and built a magnetic tweezers device that enables the application of calibrated stresses to soft materials while simultaneously measuring their microscale deformation using confocal microscopy. Unlike previous magnetic tweezers designs, our device is entirely portable, allowing easy use on microscopes in core imaging facilities or in collaborators' laboratories. The imaging cap...
متن کاملFabrication and Characterization of a New MEMS Capacitive Microphone using Perforated Diaphragm
In this paper, a novel single-chip MEMS capacitive microphone is presented. The novelties of this method relies on the moveable aluminum (Al) diaphragm positioned over the backplate electrode, where the diaphragm includes a plurality of holes to allow the air in the gap between the electrode and diaphragm to escape and thus reduce acoustical damping in the microphone. Spin-on-glass (SOG) was us...
متن کامل